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In this paper, the dynamical behavior of a shallow arch subjected to periodic excitation
with internal resonance is explored in detail. The parametric plane is then divided into
di!erent types of regions by the transition boundaries according to the types of the steady
state solutions. A time-integration scheme is used to "nd the numerical solutions in these
regions, which agree with the analytic results. Finally, numerical simulation is also applied
to obtain double-period cascading bifurcations leading to chaos and the steady state
period-3 solution is shown in the chaos region in the end.
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1. INTRODUCTION

A lot of results on the dynamics of the "rst order mode of the shallow arch subjected to
periodic excitation have been presented (e.g., see references [1, 2]). However, it has been
noticed that when the shallow arch possesses suitable initial static de#ection, internal
resonance may arise in the system. Internal resonance has been found in many physical
problems. The non-linear response of a circular pipe conveying #uid [3], the stretched string
dynamics [4, 5] and the double pendulum [6] are examples of some of the recent studies.
When the internal resonance occurs, the two modes may react with each other and energy
may be transferred between the two resonant modes. It is needed to study the two modes
simultaneously in order to obtain the dynamical behavior of the system. Tien et al. [7, 8]
examined the local and global bifurcation of the shallow arch in the presence of 1 : 1 and 1 : 2
internal resonance by using the method developed by Kovacic and Wiggins [9]. In this paper,
the investigation, combined with the results presented in our previous paper [6] is extended to
study dynamical behaviors and bifurcations of the system. Transition boundaries have been
obtained such that the parametric plane can be divided into di!erent types of regions
according to the types of the solutions. Numerical approach is employed to "nd the solutions
in these regions, which agree with the analytic results. The route to chaos by period-doubling
bifurcations as well as the period-3 solution in the chaos region is simulated in the end.

2. PROBLEM STATEMENT

We consider the shallow arch shown in Figure 1. Assume that the arch possesses initial
static de#ection, wN (x, t), before the loading of the transverse periodic force p (x, t). The
0022-460X/00/240557#15 $35.00/0 ( 2000 Academic Press



Figure 1. Model.
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dynamical de#ection, w(x, t), occurs when the periodic excitation is applied to the system.
The dimensionless equations of motion can then be given in the form [6, 7]
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is the amplitude of initial static de#ection, q
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Substituting equations (2), (3) into equations (1a, b) results in
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parameters are taken at the solid line in Figure 2, then u
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, which means that 1 : 2

internal resonance takes place.

3. STEADY STATE SOLUTIONS

We now apply the following canonical change of variables to equations (4a, b):
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Figure 2. Condition of 1 : 2 internal resonance.
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where p
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. In order to investigate the dynamics in the presence of both external

and 1 : 2 internal resonance, we introduce the detuning parameters p
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such that
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where p
1

and p
2

represent the deviation of the excitation frequency from the "rst and
second natural frequencies respectively. By using the average method, one may obtain the
following averaged system [7]:

aR
1
"eC!d

1
a
1
#

2Q
10

J2a
1
a
2

c
sin(h

1
!2h

2
)#k

J2a
1

2c
sin h

1D,

a
1
h0
1
"eC!

p
1
c

a
1
#

Q
10

J2a
1
a
2

c
cos(h

1
!2h

2
)#k

J2a
1

4c
cos h

1D,

aR
2
"eC!d

2
a
2
!

8Q
10

J2a
1
a
2

c
sin(h

1
!2h

2
)D,

a
2
h0
2
"eC!

p
2
c

a
2
#

4Q
10

J2a
1
a
2

c
cos(h

1
!2h

2
)D. (7)

Using the canonical change of variables
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in equations (7), we obtain
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From equations (7), one may obtain the following two types of solutions:
(1) Single-mode steady state solutions (a
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2
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(2) Coupled-mode steady state solutions:
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The stability of the solutions can be determined from equation (9). Letting p"
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where
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If all the eigenvalues of the Jacobian matrix J have negative real parts, the solution
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that all the values of j in equation (15) have negative real parts, and the solution is stable.
However, when
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there is a simple zero eigenvalue. The solution may lose its stability and undergo a simple
bifurcation. When

A
0
"det(J)'0, A

1
'0, A

3
'0, A

1
A

2
A

3
!(A

0
A2

3
#A2

1
)"0, (18)

there will be a pair of pure imaginary eigenvalues and the possible Hopf bifurcation will
take place.

For the single-mode steady state solutions (a
1
O0, a

2
"0), the eigenvalues satisfy the

following equations:
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Figure 3. Single-mode motion leads to coupled-mode motion.

562 Q. BI AND H. H. DAI
is satis"ed, then the single-mode motion is stable. The critical line which de"nes the stability
boundary of the single-mode motion can then be de"ned as
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from which the coupled-mode motion described by equation (11) bifurcates from the
single-mode motion (10), as shown in Figure 3. The energy of the system is transmitted from
the "rst order mode to the second order mode.

For the coupled-mode steady state solutions (a
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Since a
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order mode respectively). It is easy to "nd that A
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which, in turn, gives two critical lines. One of these is described by
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from which saddle-node bifurcation occurs. The second critical line is
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which leads to a family of limit cycles bifurcating from the coupled-mode motion.
The physical parametric plane is divided into di!erent regions by these bifurcation

transition boundaries expressed by equations (21), (25) and (26). The solutions in these
regions are di!erent from each other. In the region of the Hopf bifurcation solution
bounded by equation (26), there are very rich dynamical behaviors. Since the analytical
method cannot solve the problems, we now turn to the numerical simulation in the
following analysis.

4. NUMERICAL ANALYSIS

A numerical method is employed in this section in order to express the transition
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In region u, the single-mode motion loses its stability and leads to coupled-mode motion
by simple bifurcation. It is easy to "nd that the coupled-mode motion is stable by a simple
eigenvalue analysis.

At the boundary of region v, the coupled-mode motion loses its stability and leads to
modulated motion by Hopf bifurcation. A family of limit cycles takes place at the transition
boundary. The Hopf bifurcation leads to chaos by a set of period-doubling bifurcations,
which we will show in the following text.

The pitchfork bifurcation occurs at the critical boundaries from t, t@, tA, t@@@ to u,
and the saddle-node bifurcation takes place at the boundary from tA to s and from t@@@ to
r, while the Hopf bifurcation starts at the transition boundary from u to v.

The curves of J2a
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and the
bifurcation points are given in Figure 5 when p
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the subcritical Hopf bifurcation is found and the coupled-mode motion regains its stability.
The saturation phenomenon is still observed. When p
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increases to 3)15, the pitchfork

bifurcation occurs and the unstable solution a
2
O0 is found. The saturation phenomenon

disappears. When p
1

further increases to 20)43, the saddle-node bifurcation takes place,
which leads to the instability of the coupled-mode motion and the single-mode motion
regains its stability.

The curves of J2a
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depending on the detuning parameter p
2

and the
bifurcation points are given in Figure 6 when p

1
"!2)4. When p
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found and the single-mode motion leads to coupled-mode motion. There are two branches
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unstable. When p
2

increases to !3)15, the pitchfork bifurcation leads to the disappearance
Figure 5. Response curves when p
2
"2)4. } } } , unstable solution; ** , stable solution; d, Pitchfork

bifurcation; r, Hopf bifurcation; m, saddle-node bifurcation.



BIFURCATION OF SHALLOW ARCH 565
of a
2
"a~

2
. When p

2
increases to 1)72, the coupled-mode motion loses its stability by

supercritical Hopf bifurcation and the modulated motion is found. The coupled-mode
motion regains its stability at the point p

2
"3)05 by the supercritical Hopf bifurcation. The

coupled-mode motion leads to the single-mode motion when p
2

increases to 3)25.
Figure 6. Response curves when p
1
"!2 ) 4. } } } , unstable solution; ** , stable solution; d, Pitchfork

bifurcation; r, Hopf bifurcation; m, saddle-node bifurcation.

Figure 7. Transition boundaries of Hopf bifurcation. (a) k"0)8, (b) k"0)5, (c) k"0)3, (d) k"0)1.
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The critical boundaries of Hopf bifurcation on the plane (p
1
}p

2
) are given in Figure 7

when p
1
(0, p

2
'0, where k"0)8, 0)5, 0)3, 0)1 respectively. It is noted that another set of

critical boundaries of Hopf bifurcation which are symmetric to these boundaries about the
axes (p

1
, p

2
) exist in the region p

1
'0, p

2
(0. We omit these symmetric boundaries for

simplicity (see Figure 4 for reference).
It can be seen that with the decrease of the amplitude of external force k, the regions for

the Hopf bifurcation contract. The modulated motion which occurs at the Hopf bifurcation
boundaries leads to complicated dynamical phenomena with the change of p

1
, p

2
.

In order to investigate the complicated dynamics in region v with the change of p
1
, p

2
,

we "x some of the parameters with 1 : 2 internal resonance at d
1
"d

2
"0)1, k"0)8,

c"J48, Q
10
"!J24, p

2
"3)04. A time-integration scheme has been employed to "nd
Figure 8. Period-doubling to chaos. (a) Period-1, (b) period-2, (c) period-4, (d) period-8, (e) chaos.



Figure 8. Continued.

Figure 9. Poincare map on the plane u
2
"0.
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double-periodic motions leading to chaos*a well-known chaos scenario. The cascading
bifurcation happens when p

1
is increased from !2)0. The sequence of period-doubling

bifurcations is shown in Figures 8(a}e) where the detuning parameter is taken at p
1
"!2)0,

!1)8,!1)69,!1)66,!1)64 respectively. The Poincare map which may be called strange
attractor at the cross-section u

2
"0 is shown in Figure 9 when p

1
"!1)55.

When p
1

is increased to!1)48, there exists a stable steady state solution of period-1 in
the chaos region. This solution also leads to chaos by a sequence of period-doubling



Figure 10. Period-doubling to chaos. (a) Period-1, (b) period-2, (c) period-4, (d) period-8, (e) chaos.
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bifurcations, which is shown in Figure 10(a}e), where the bifurcation parameter*detuning
parameter p

1
is taken at p

1
"!1)46, !1)42, !1)40, !1)38, !1)37 respectively. The

Poincare map*strange attractor at the cross-section u
2
"0 is shown in Figure 11 when

p
1
"!1)25.
When p

1
is further increased to !0)07, the chaos leads to modulated motion*Hopf

bifurcation solution. The phase portraits of (u
1
, v

1
) and (u

2
, v

2
) are given in Figure 12(a}c),

where the attractors in Figure 12(b, c) are symmetric to each other. The two attractors exist
at the same time but correspond to di!erent attracting basins.

In the chaos region, period-3 solution can be observed obviously. The portraits of
period-6 for (u

1
, v

1
) and period-3 for (u

2
, v

2
) are shown in Figure 13(a, b) when p

1
"!1)34.

Note that the symmetric attractors are omitted for simplicity.



Figure 10. Continued.

Figure 11. Poincare map at the cross-section u
2
"0.
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5. CONCLUSION

When the shallow arch is subjected to periodic excitation, the internal resonance occurs
between the "rst order and the second order modes. The parametric plane can be divided
into di!erent types of regions according to the types of motions. The single-mode motion
loses its stability and the coupled-mode motion occurs by simple bifurcation. The
coupled-mode motion turns to modulated motion undergoing a Hopf bifurcation. The
system leads to chaos via a sequence of period-doubling bifurcations. In the chaos region,
a period-1 solution is found and it turns to chaos quickly by a set of period-doubling
bifurcations. Period-3 is also found in the chaos region, which soon loses its stability.



Figure 12. Hopf bifurcation solutions.

Figure 13. Period-6 solution for (u
1
, v

1
) and period-3 solution for (u

2
, v

2
).
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